This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography \& Related Technologies

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597273

Use of a Programmable Pocket Calculator for Data Reduction in GPC: Calculation of Molecular Weights and Molecular Weight Distribution
Alberto A. Navas ${ }^{\text {a }}$
${ }^{\text {a }}$ Films Research and Development Technical Center, Mobil Chemical Company, Macedon, New York

To cite this Article Navas, Alberto A.(1982) 'Use of a Programmable Pocket Calculator for Data Reduction in GPC:
Calculation of Molecular Weights and Molecular Weight Distribution', Journal of Liquid Chromatography \& Related Technologies, 5: 3, 413-423
To link to this Article: DOI: 10.1080/01483918208066905
URL: http://dx.doi.org/10.1080/01483918208066905

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

USE OF A PROGRAMMABLE POCKET CALCULATOR FOR DATA REDUCTION IN GPC: CALCUIATION OF MOLECUIAR WEIGHTS

AND MOLECULAR WEIGFT DISTRIBUTION

Alberto A. Navas
Mobil Chemical Company, Films Research and Development Technical Center, Macedon, New York 14502

Abstract

A short program was written for a pocket programmable calculator (HP-29C), to reduce data from a Gel Permeation Chromatogram. The output of this program consists of weight- and number-average molecular weights, polydispersity, and normalized weight distribution. All were uncorrected for dispersion. Mathematical approximation of the GPC calibration curve was made by exponential fit, also performed on the programmale calculator. The program and its application to NBS 706 and one narrow-molecular weight distribution (NMWD) polystyrene standards are presented. With slight modification, the program can be used on newer, more powerful calculators such as the HP-41C, on which dispersion correction subroutines could be performed.

INTRODUCTION

The advent of low-cost minicomputers has made the use of online GPC data acquisition and reduction economical and practical in the laboratory. However, these systems cost several thousand dollars. An inexpensive alternative to these systems is the use of a programmable pocket calculator, such as the Hewlett-Packard 29C.

A GPC calibration curve was generated, also on the calculator, by exponential fit of elution volumes of narrow-molecular weight polystyrene standards (NMMD) vs. peak molecular weight for each standard. Use was made of Hewlett-Packard's Curve Fitting Program.

The expression thus generated was of the form:

$$
\begin{aligned}
\mathrm{MN}_{\mathrm{i}} & =\mathrm{a} \times \mathrm{e}^{(\mathrm{b} \times \mathrm{Ve})} \\
\text { or: } \quad \operatorname{lnMW_{i}} & =\ln a+b \mathrm{Ve} \\
\text { where: } \mathrm{a} & =\text { intercept } \\
\mathrm{b} & =\text { slope } \\
\mathrm{Ve} & =\text { elution volume, } \mathrm{ml} .
\end{aligned}
$$

The constants (a and b) were used to initialize the GPC program. In use, chromatogram heights (H_{i}) are entered in succession, immediately following the display of the molecular weight $\left(M W_{i}\right)$ corresponding to the elution volume $\left(\mathrm{Ve}_{\mathrm{i}}\right)$. When the last chromatogram height entered is zero, Mw, Mn, and the polydispersity are displayed, followed by a normalized cummulative distribution. The equations used in the program were ${ }^{(1)}$:

$$
\begin{align*}
& M W=\frac{\Sigma\left(H_{i} \times M_{i}\right)}{\Sigma H_{i}} \tag{2}\\
& M n=\frac{\Sigma H_{i}}{\Sigma\left(H_{i} / M_{i}\right)} \tag{3}
\end{align*}
$$

Polydispersity $=\mathrm{Mw} / \mathrm{Mn}$
The normalized distribution is defined as: Normalized distribution $=\frac{H_{i}}{\Sigma H_{i}} \times 100$

METHOD
Narrow molecular weight polystyrene standards, purchased from Waters Associates (Milford, Mass.), were used as received. The set consisted of PS $3600,50000,240000$, and 2700000 . NBS 706 (Office of Reference Materials, National Bureau of Standards, Washington, D.C.), was also used as received.

The PS standards were used for calibration as a mixture of 3 mg . of PS 2.7E6, and 5 mg . of each of the others plus 5.0 mg .
of BHT in 10.0 ml . of u.v.-grade THF (J.T. Baker, Co.). NBS 706 was used as a solution of 25 mg . in 10 ml . THF.

The GPC column set consisted of four μ Styragel colums of nominal exclusion range $10^{5} \AA, 10^{4} \AA, 10^{3} \AA$, and $10^{2} \AA$. The solvent used was uninhibited tetrahydrofuran (THF), purchased from the J.T. Baker, Co.

A Waters Associates HLC/GPC 244 Liquid Chromatograph was used in the analysis. Flow rate was $2.0 \mathrm{ml} . / \mathrm{min} . ;$ detection was with the Model 440 U.V. Absorbance Detector (254 nm), l. 0 AUFS. All solutions were filtered through a $0.5 \mu \mathrm{~m}$ Teflon filter prior to analysis, using Waters' Sample Clarification Kit. All analyses were performed at room temperature. A modified internal standard method was used to correct for slight fluctuations in flow rate(2).

THE MOLECULAR WEIGHT PROGRAM AND ITS USE
First, a GPC calibration curve was generated, using data from the liquid chromatograph. For this purpose, Hewlett-Packard's Exponential Curve Fit Program was used, entering elution volumes vs. molecular weight for each standard (see Table l). The calibration data were as follows:

The Exponential Curve Fit Program then gave the following expression, after Equation (l_{b}):

$$
\begin{align*}
\ln \mathbb{M W}_{\mathrm{i}} & =\ln 5.3489455 \times 10^{10}-0.468683685 \times \mathrm{Ve} \tag{6}\\
\text { with } \mathrm{r}^{2} & =0.9994 \text { (correlation coefficient), and } \\
\mathrm{a} & =5.3489455 \times 10^{10} \\
\mathrm{~b} & =-0.468683685
\end{align*}
$$

TABLE 1.

Elution Volumes and Corresponding Molecular Weights
$\frac{\text { Ve, ml. }}{21.10}$

Both a and b will be needed to initialize the GPC program. All decimals should be carried out, for improved fit of the data to the regression curve.

The program keystrokes and their corresponding key codes are listed below. These must be entered with the calculator set to PROGRAM mode ("PRGM").

STEP KEY ENTRY KEY CODE

1	g LBL 2	01	15	13	02
2	RCL 2	02	24	02	
3	GSB 3	03	12	03	
4	RCL 1	04	24	01	
5	x	05		61	
6	$\mathrm{~g} \mathrm{e}^{\mathrm{X}}$	06	15	42	
7	RCL 3	07	24	03	
8	x	08		61	
9	STO 4	09	23	04	
10	f FIX 0	10	14	11	00

$11 \mathrm{R} / \mathrm{S} \quad 11 \quad 74$
$12 \quad \mathrm{~g} x=0 \quad 12 \quad 1571$
13 GSB 131201
14 STO i $14 \quad 2322$
$15 \quad$ STO $+7 \quad 15 \quad 23 \quad 51 \quad 07$
$16 \quad \mathrm{x} \quad 16 \quad 61$.
$17 \quad$ STO $+5 \quad 17 \quad 235105$
$18 \quad$ RCL i $\quad 18 \quad 2422$
19 RCL $4 \quad 19 \quad 2404$

20	\div	20		71
21	STO +6	21	23	51

$\begin{array}{llll}22 & 9 & 22 & 09\end{array}$
23 RCL $0 \quad 23 \quad 2400$
$24 \quad \mathrm{f} x>y \quad 24 \quad 1451$
25 g DSZ $25 \quad 1523$

STEP KEY ENTRY KEY CODE

26	1	26		01
27	-	27		73
28	5	28		05
29	g l/x	29	15	74
30	STO +2	30	23	51
31	GSB 2	31	12	02
32	G LBL 1	32	15	13
01				
33	RCL 5	33	24	05
34	RCL 7	34	24	07

$35 \quad \div \quad 35 \quad 71$

36 R/S $36 \quad 74$
$37 \quad$ RCL $7 \quad 37 \quad 24 \quad 07$
$38 \quad$ RCL $6 \quad 38 \quad 2406$
$39 \quad \div \quad 39 \quad 71$
$40 \mathrm{R} / \mathrm{S} \quad 40 \quad 74$
$41 \quad \div \quad 41 \quad 71$
42 f FIX 242141102
$43 \mathrm{R} / \mathrm{S} \quad 43 \quad 74$
$\begin{array}{llll}44 & 2 & 44 & 02\end{array}$
$\begin{array}{llll}45 & 9 & 45 & 09\end{array}$
$46 \quad$ STO $0 \quad 46 \quad 2300$
$\begin{array}{llll}47 & 0 & 47 & 00\end{array}$
48 STO $1 \quad 48 \quad 2301$
49 g LBL $5 \quad 49151305$
$50 \quad$ RCL i $\quad 50 \quad 2402$

STEP	KEY ENTRY	KEY CODE			STEP	KEY E	NTRY	KEY CODE		
51	g LBL 7	5115	513	07	64	RCL		64	24	22
52	RCL 7	52	24	07	65	R/S		65		74
53	\div	53		71	66	g DSZ		66	15	23
54	1	54		01	67	GIO	5	67	13	05
55	0	55		00	68	9 LeL	8	6815	13	08
56	0	56		00	69	RCL	1	69	24	01
57	x	57		61	70	R/S		70		74
58	STO +1	582	2351	01	71	GIO		71	13	07
59	f PSE	59	14	74	72	g LBL	3	7215	13	03
60	9	6.0		09	73	RCL	8	73	24	08
61	RCL 0	61	24	00	74	+		74		51
62	f $\mathrm{x}=\mathrm{y}$	62	14	71	75	g RIN		75	15	12
63	Gro 8	63			76	R/S		76		74

The GPC program is "initialized" (prepared to run), with the calculator in "RUN" mode, as follows:

INSTRUCTION	INPUT	KEYS	OUTPUT
1. Set all memory registers			
to zero:		f REG	0
2. Set program to step 0:		gRTN	0

3. Enter calibration curve parameters:
a) slope b in Register $l\left(R_{1}\right)$:
b) first Ve at $\mathrm{H}_{\mathrm{i}} \neq 0$, in R_{2}
$\stackrel{b}{H}_{\mathrm{H}(1)} \neq 0$

STO 1 b
c) interopt a in R_{3} :
$\begin{array}{ll}\text { STO } 2 & \mathrm{H}_{\mathrm{i}}(\mathrm{l}) \\ \text { STO } 3 & \neq 0\end{array}$
4. Enter indirect register address in R_{0} :

29
STO $0 \quad 29$
5. Store correction to Ve (Sample) in R_{8} :

$$
(\pm) \mathrm{Ve}
$$

STO 8
(\pm) Ve (oorrection)
[if Ve (Internal Standard Sample) > Ve (Internal Standard, Rum I), then correction is negative.]

The calculator is now ready to execute the program. By pressing R / S, the $M W_{i}$ corresponding to the first non-zero chromatogram height is displayed (the molecular weights will be displayed start-
ing with the higest, and proceeding through intermediate $M \mathbb{M} ' s$, to lowest MN's). The first $H_{i(1)}$ is entered, and R / S is again pressed:
INSTRUCTION INPUT KEYS OUTPUT
6. Press R/S:

R/S First M_{i} at
$H_{i(1)} \neq 0$
7. Enter chromatogram height
$\left(H_{i(1)}\right)$ corresponding to
$\mathrm{MW}_{\mathbf{i}}$ (and $\mathrm{Ve}{ }_{(1)}$) displayed: $\mathrm{H}_{i(1)} \neq 0 \quad \mathrm{R} / \mathrm{S} \quad$ Second MW_{i}
8. Enter remaining chromato-
gram heights, until last

9. When $H_{i \text { (last) }}=0$,

Miv is displayed: $\quad H_{i}=0 \quad \mathrm{R} / \mathrm{S} \quad \mathrm{M} w$
10. Calculate Mn : $\mathrm{R} / \mathrm{S} \mathrm{Mn}$
11. Calculate $M w / \mathrm{Mn}: \quad \mathrm{R} / \mathrm{S} \quad \mathrm{Mw} / \mathrm{Mn}$
12. Start display of $\%$ polymer
fraction and \% cummulative.
Program pauses after $\frac{\square}{\circ}$
fraction is displayed, and stops after each \% cummulative:
R / S \% cummulative
13. If the number of data points
is greater than 20, "9" is
displayed after the 20th
data point is entered. Reenter the 20 th point, and continue with the remaining H_{i} 's: $\quad \mathrm{H}_{\mathbf{i}} \mathrm{R} / \mathrm{S}$ \% cummulative
14. Final \% cummulative must always be 100.00\%:

R/S 100.00

Memory register contents are as follows:
R_{0} : 29. Indirect register address. Controls Registers 29 through 9 for storage of chromatogram heights, $\mathrm{R}_{29} \rightarrow \mathrm{R}_{9}$.
R_{1} : a) GPC Calibration curve slope (b), for calculation of Mw's.
b) Cummulative \% (during MND calculation).
$R_{2}: V e_{1}$, initially set to elution volume for which $H_{i} \neq 0$.
R_{3} : GPC Calibration curve intercept (a).
$\mathrm{R}_{4}: \quad \mathrm{MN}_{\mathrm{i}}$.
$R_{5}: \quad \sum\left(M W_{i} \times H_{i}\right)$.
$\mathrm{R}_{6}: \quad \Sigma\left(\mathrm{H}_{\mathrm{i}} \div \mathrm{MN}_{\mathrm{i}}\right)$.
$R_{7}: \sum H_{i}$.
R_{8} : Ve correction from internal standard, (first run - current run).
R_{9} to R_{29} : Chromatogram heights, starting at R_{29} for first nonzero H_{i} -

The GPC program can be summarized as follows:
STEP NO. to SIEP NO. FUNCTION
$1 \quad$ Il Generate $M N_{i}$.
1213 If last $\mathrm{H}_{\mathrm{i}}=0$, then calculate Mw, Mn, and $\mathrm{Nw} / \mathrm{Mm}$ (Subroutine 1).

Store H_{i} in $R_{29} \rightarrow R_{9}$, by using indirect address "i". $\Sigma \mathrm{H}_{\mathrm{i}}$ -
$\mathrm{MN}_{\mathrm{i}} \times \mathrm{H}_{\mathrm{i}}$, and $\Sigma\left(\mathrm{MN}_{\mathrm{i}} \times \mathrm{H}_{\mathrm{i}}\right)$.
$H_{i} \div \mathbb{M N}_{i}$, and $\Sigma\left(H_{i} \div \mathbb{M W}_{i}\right)$.
Memory register automatic decrement, from $R_{29} \rightarrow R_{9}$.
Automatic counter. Permits selection of specific time intervals for which H_{i} 's will be collected.

Return to Subroutine 2, to calculate next $\mathbb{M N}_{i}$, if $H_{i} \neq 0$.
Calculate Mw, Mn, and $\mathrm{Mw} / \mathrm{Mm}$, and display each.

Reset indirect address, to start calculation of $\%$ polymer and \% cummulative distribution.

STEP NO.	to STEP NO.	FUNCTION
49	61	Calculate \% polymer and \% cummulative.
62	65	If register is R_{9}, go to Subroutine 8 and enter excess H_{i} 's manually (if > 20 heights).
66	67	If register is $>R_{9}$, then decrement register number, and continue with MWD calculation.
68	71	If register $=R_{9}$, enter excess H_{i} 's manually.
72	75	Correction to Ve , due to flow rate variations.

RESULTS: APPLICATION OF THE GPC PROGRAM TO NBS 706 \& PS 110,000
As Table 2 shows, excellent agreement between the calculatorgenerated molecular weights and the published molecular weights was obtained. The number average molecular weights are off somewhat, since no corrections for dispersion were made;

TABLE 2.

Calculator-		nerated	cular Weig	NBS 706
		Mw	Mn	Mw/Mn
NBS	706 (GPC) :	256,990	119,997	2.14
		257,800 ${ }^{\text {a }}$	136,500 ${ }^{\text {b }}$	
		259,464d	124,789d	$2.08{ }^{\text {d }}$
PS	110,000 (GPC) :	112,376	103,601	1.08
		110,000 ${ }^{\text {c }}$	111,000 ${ }^{\text {b }}$	
		116,447 ${ }^{\text {d }}$	106,447d	1.09 d
a: NBS value from light scattering measurements. b: NBS value from osmometry.				
c: GPC peak molecular weight, from Waters Associates.				
d:	From Sigma-10 GPC System (Perkin-Elmer Data System), in our laboratory			

The calculation time per sample, including chromatogram handling, is between ten and fifteen minutes.

Tables 3 and 4 show the worksheets used to calculate the molecular weights and MWD.

Initially, only Ve and $M N_{i}$ make up the tables. H_{i} 's are obtained from the Gel Permeation Chromatogram, and the GPC Program generates the \% polymer and of cummulative values. As these tables also illustrate, the data point interval can be changed readily, to accommodate various polydispersities.

TABLE 3.

NBS 706				
Ve, ml.	\underline{H}_{-1}	MW_{i}	\% polymer	\% Cummulative
22.00	0	1,779, ${ }^{\text {2 } 62 ~}$	0.00	0.00
22.67	0.8	1,301,794	0.40	0.40
23.33	4.2	952,455	2.00	2.51
24.00	9.5	696,861	4.77	7.29
24.67	16.5	509,857	8.29	15.58
25.33	23.7	373,036	11.91	27.49
26.00	28.9	272,931	14.52	42.01
26.67	30.3	199,689	15.23	57.24
27.33	27.3	146,102	13.72	70.95
28.00	21.6	106,896	10.85	81.81
28.67	14.1	78,210	7.08	88.89
29.33	8.3	57,222	4.17	93.07
30.00	5.1	41,866	2.56	95.63
30.67	3.5	30,584	1.76	97.39
31.33	2.4	22,411	1.21	98.59
32.00	1.4	16,397	0.70	99.30
32.67	0.8	11,997	0.40	99.70
33.33	0.4	8,778	0.20	99.90
34.00	0.2	6,422	0.10	100.00
34.67	0.0	4,699	0.00	100.00

TABLE 4.

PS 110,000				
Ve, ml.	H_{-1}	$\mathrm{MW}_{\underline{i}}$	\% polymer	\% Cummulative
26.00	0	272,931	0.00	0.00
26.33	0.4	233,455	0.35	0.35
26.67	2.2	199,689	1.95	2.31
27.00	6.8	170,807	6.03	8.34
27.33	14.7	146,102	13.04	21.38
27.67	22.5	124,971	19.96	41.35
28.00	25.1	106,896	22.27	63.62
28.33	20.2	91,435	17.92	81.54
28.67	12.0	78,210	10.65	92.19
29.00	5.4	66,898	4.79	96.98
29.33	2.2	57,222	1.95	98.94
29.67	0.8	48,946	0.71	99.65
30.00	0.3	41,866	0.27	99.91
30.33	0.1	35,811	0.09	100.00
30.67	0.0	30,631	0.00	100.00

Although the GPC program is written to accept a large number of data points, the interval must be varied to keep the number of points between twenty and thirty. So long as only the molecular weight averages are desired, regular data entry is required. But, for a number of data points greater than twenty, manual re-entry of each H_{i} in excess of twenty must be done if the MWD is desired.

As Table 2 shows, the number average molecular weights differ somewhat from published values. However, as long as the GPC work is done on a comparative basis, obtaining a perfect match for Mw , Mn , and $\mathrm{Mw} / \mathrm{Mn}$ is not necessary. The GPC program presented here provides comparative MWD data which has been extremely useful in differentiating "good" lots from "bad" lots of polymers.

CONCLUSIONS

It has been shown that a pocket programmable calculator is a versatile and convenient tool in the reduction of Gel Permeation chromatography data. The short program presented here can be used as a back-up for existing laboratory minicomputers, or as a totally portable system. The GPC program could be modified slightly for use on newer, more powerful calculators such as the HP-41C, on which dispersion correction subroutines could be easily performed.

REFERENCES

(1) Cazes, J., Gel Permeation Chromatography, J. Chem., Ed., 43, A625 (1966).
(2) Kohn, E., and Ashcroft, R.W. , Liquid Chromatography of Polymers and Related Materials, Chromatographic Science Series, 8, p. 105, Dekker, 1977.

